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Context: Machine Learning (ML) is widely used in critical domains like finance, healthcare, and criminal
justice, where unfair predictions can lead to harmful outcomes. Although bias mitigation techniques have
been developed by the Software Engineering (SE) community, their practical adoption is limited due to
complexity and integration issues. As a simpler alternative, fairness-aware practices, namely conventional ML
engineering techniques adapted to promote fairness, e.g., MinMax Scaling, which normalizes feature values
to prevent attributes linked to sensitive groups from disproportionately influencing predictions, have recently
been proposed, yet their actual impact is still unexplored.

Objective: Building on our prior work that explored fairness-aware practices in different contexts, this paper
extends the investigation through a large-scale empirical study assessing their effectiveness across diverse ML
tasks, sensitive attributes, and datasets belonging to specific application domains.

Methods: We conduct 5940 experiments, evaluating fairness-aware practices from two perspectives: contextual
bias mitigation and cost-effectiveness. Contextual evaluation examines fairness improvements across different ML
models, sensitive attributes, and datasets. Cost-effectiveness analysis considers the trade-off between fairness
gains and performance costs.

Results: Findings reveal that the effectiveness of fairness-aware practices depends on specific contexts’ datasets
and configurations, while cost-effectiveness analysis highlights those that best balance ethical gains and
efficiency.

Conclusion: These insights guide practitioners in choosing fairness-enhancing practices with minimal perfor-
mance impact, supporting ethical ML development.

1. Introduction

Artificial Intelligence (AI), with Machine Learning (ML) at its core,
is rapidly integrating into daily life, automating decision-making pro-
cesses [1-3]. However, its widespread adoption has raised ethical
concerns regarding fairness, defined as an ML model’s ability to make
unbiased decisions without discriminating against specific groups [4].
Often, bias often arises from ML algorithms’ reliance on historical data,
leading to skewed representations [5,6]. Typically, bias is linked to
sensitive attributes such as gender, race, or age [7,8]; indeed improper
handling of these attributes can reinforce discrimination [9], as seen in
documented ethical incidents like Facebook’s discriminatory labeling of
Black men and Amazon’s biased ranking of LGBTQIA+ books [10-13].
These cases highlight the urgent need for fair ML software.

* Corresponding author.

To address these concerns, the Software Engineering (SE) and Al
research communities have developed bias mitigation techniques, which
operate at different ML development stages to reduce bias. These
techniques fall into three categories: pre-processing (modifying data
before training), in-processing (adjusting learning algorithms during
training), and post-processing (modifying outputs after training) [4,14].
Typically implemented in fairness toolkits [15], these solutions have
demonstrated effectiveness in empirical experiments [16-18]. How-
ever, fairness is highly context dependent, i.e., the effectiveness of
mitigation strategies often varies based on the specific dataset, task,
model, and sensitive attribute involved [19]. This variability may
notably impact practitioners, as it complicates the selection of inter-
ventions and limits the generalizability of findings. In addition, bias
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mitigation algorithms may affect the implementation costs [20], other
than degrading model performance and reducing user trust [4,21].
Because of the reasons above, fairness toolkits and bias mitigation al-
gorithms remain underutilized [15,22], with developers either applying
fairness measures inconsistently or avoiding them altogether.

To overcome these challenges, recent SE research [23] has proposed
fairness-aware practices: conventional ML engineering practices that
are adapted to promote fairness without requiring specialized toolkits.
Examples include data balancing, which addresses class imbalances,
and mutation testing, which reveals fairness violations by evaluating
prediction consistency under slight input variations. As these practices
build on techniques familiar to practitioners, they might lower the
barriers and make fairness enhancement more accessible. These prac-
tices are organized across the six ML development stages defined by
Burkov [24]: they range from early stages like “Requirements Elicitation”
and “Data Preparation” (e.g., Multi-objective Optimization, Data Balanc-
ing) to later stages like “Model Maintenance & Evolution” (e.g., Model
Outcomes Analysis). While these practices have been deemed promising
by practitioners [25], who acknowledged their fairness benefits and low
implementation effort. On the one hand, their effectiveness across diverse
contexts, ML tasks, and sensitive attributes has not been investigated. On the
other hand, their ability to improve fairness without compromising model
performance remains unclear. Addressing these questions is crucial to
assess the viability of fairness-aware practices and to provide actionable
guidance.

Research Objective. Our objective is to empirically evaluate
the extent to which fairness-aware practices can increase ML fairness
while not deteriorating performance for datasets belonging to specific
contexts, on different ML tasks, and considering various sensitive
attributes.

In a preliminary investigation on the matter [26], we evaluated
fairness-aware practices from two perspectives. First, we assessed their
contextual impact, demonstrating that the effectiveness of individual
practices varies depending on the datasets and application domains
in which they are applied. Second, we conducted a cost-effectiveness
analysis, providing trade-offs between fairness improvements and per-
formance degradation. However, the scope of that study was limited
to a single ML task, and only one sensitive attribute. In this paper, we
extend our previous work by providing a more comprehensive inves-
tigation involving multiple ML tasks, models, and sensitive attributes.
Moreover, rather than assessing fairness-aware practices as aggregated
groups, we analyze the impact of each practice individually across di-
verse datasets belonging to critical contexts. To support this evaluation,
we select widely used datasets from prior fairness research [16,19,
20], each representative of different real-world application domains,
i.e., Recidivism Prediction [19], Economics [27], Marketing [28], Fi-
nance [29], and Crime [30]. For each of these, we consider the ML
tasks most associated with it in the literature, such as classification
with Random Forests or clustering with K-means. We then select a set
of fairness-aware practices informed by practitioner insights regarding
their fairness impact and adoption frequency [25]. Finally, we conduct
an extensive empirical evaluation involving 5940 training runs across
combinations of datasets, practices, ML tasks, and sensitive attributes,
measuring both fairness and performance outcomes. Particularly, we
adopt a group fairness [4] perspective, evaluating disparities between
groups rather than focusing on individual-level fairness [4].

Our results indicate that Mutation Testing improves fairness across
classification tasks, particularly for the datasets of the Recidivism,
Finance, and Crime domains. MinMax Scaling is the most effective for
clustering, especially in the Economics domain. Furthermore, Select
Best and MinMax Scaling generally provide a balance between fairness
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and performance. Regularization and Mutation Testing shows promis-
ing results in balancing fairness improvements and predictive accuracy,
while Simple and Iterative Imputers contribute to fairness in specific
cases.

To summarize, our research provides the following major contribu-
tions:

1. A comprehensive empirical study with 5940 experiments of
fairness-aware practices with different combinations of ML tasks,
sensitive attributes, and datasets;

2. A dual-perspective analysis focusing on improvements of fairness
and potential loss in performance;

3. An online appendix providing all data and scripts to replicate
and verify our study [31];

4. Practical, evidence-based suggestions for practitioners aiming
to enhance fairness in real-world ML systems through a tool
that makes our findings actionable, available in our online ap-
pendix [31].

2. Background and related work

This chapter presents the fundamental concepts that guide our
study. First, we formalize key notions such as individual and group
fairness, clarify the role of sensitive attributes, and discuss how bi-
ases are present in the machine learning (ML) pipeline. Then, we
review the state of the art in ML fairness, analyzing the frameworks,
bias-mitigation algorithms, and the evaluations that motivate our ex-
perimental design. This provides the necessary context to understand
the methodology and contributions presented in this study.

2.1. Terminology and background

ML fairness seeks to ensure that predictions are unbiased with
respect to individuals or groups [32].

Individual Fairness is the principle that any two similar
individuals - according to specific characteristics — should receive
similar outcomes with respect to a given task [33].

Group Fairness refers to the principle that distinct groups - e.g.,
groups defined by demographics or opportunities — should receive
equal treatment, regardless of their characteristics [4]. In this study,
we focus on group fairness because it is widely adopted in empirical
research evaluating fairness-aware methods [5,6], supported by widely-
adopted fairness toolkits [4], and well-aligned with the types of metrics
and datasets selected in our work [19].

Additionally, fairness definitions vary based on which and how
sensitive attributes are treated. Sensitive (or protected) attributes
are personal characteristics of groups or individuals that may lead to
discriminatory treatment or influence decision outcomes for specific
tasks [4]. Typical examples include particular genders, ethnicities, ages,
religions, disabilities, or sexual orientations [4,32]. For example, Fair-
ness through unawareness excludes them from decisions [32,34,35],
while Fairness through awareness explicitly incorporates them to
ensure equitable outcomes [32,36]. Fairness is now a critical concern
in SE and Al, seen as a non-functional requirement for Al-integrated
systems [6,14,16,37,38]. Bias, i.e., systematic distortion in data or
models, can lead to unfair outcomes [4]. Persistent issues, like gender
bias in hiring [39] or racial bias in facial recognition [40], highlight
the need for fairness-aware practices. Unfairness can arise throughout
the ML pipeline, from biased data collection to feature selection that
embeds correlations with sensitive attributes [6,37].

In previous research bias mitigation techniques were classified into
pre-processing, in-processing, and post-processing approaches.

Pre-processing methods reduce bias by adjusting training data
before model learning. Examples include Fair-SMOTE, which gener-
ates synthetic samples [41], and reweighting techniques that modify
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instance weights [42]. These approaches help address group underrep-
resentation [40,43] by improving population representation in train-
ing data. In-processing techniques modify algorithms during training
to mitigate bias. For instance, Zhang et al. [44] used adversarial
learning, while Chakraborty et al. [45] applied multi-objective opti-
mization. These methods help prevent reinforcing inequalities [39].
Post-processing methods adjust model outputs to improve fairness
without retraining. Tools like Tuemis [46] and Arquitas [47] are useful
when retraining is costly or impractical.

2.2. Related works

Recent research has advanced quantitative evaluations for fair-
ness improvement methods. Hort et al. [18] introduced Fairea, a tool
to benchmark bias mitigation methods. Chen et al. [48] used Farea
in a large-scale study with seven algorithms, finding that mitigation
methods can reduce accuracy, with effectiveness varying. Zhang and
Sun [17] adapted ML fairness methods for multiple sensitive attributes.
Chen et al. [16] benchmarked fairness improvements across eight
techniques, while Hort et al. [14] proposed a new approach to enhance
both fairness and accuracy. De Martino et al. [20] benchmarked bias
mitigation algorithms and explored the trade-offs among social sus-
tainability, i.e., fairness, economic sustainability, and environmental
sustainability. Finally, Fabris et al. [19] performed an analysis of the
algorithmic-fairness literature, screening papers and datasets, such as
Adult, COMPAS, and German Credit. Their study introduces fairness
tasks, sensitive attributes, and best-practice recommendations. On this
basis, the authors propose practical guidelines for selecting datasets
according to the domain and the fairness notion under study. Le
Quy et al. [49] extend this perspective with an empirical analysis of
the more commonly used tabular datasets. Mapping the dependencies
between protected attributes, quantifying the trade-off between predic-
tive utility and fairness, and exposing specific biases of the datasets.
Their findings underscore that robust fairness evaluation must consider
multiple application domains and sensitive attributes. With these re-
sults [49] and the guidelines of Fabris et al. [19], we designed the
dataset-selection strategy adopted in this study.

Despite extensive research, fairness toolkits and bias mitigation
techniques remain underused in practice [15,22]. This gap stems from
context-dependent effectiveness, potential performance trade-offs, im-
plementation costs, and integration challenges. To address this, Voria
et al. [23] compiled a catalog of fairness-aware practices — standard
ML engineering techniques adapted to address bias — mapped to the
six stages of the ML life-cycle [24], including Data Balancing, Parameter
Regularization, and Causal Validation. These are familiar to practitioners
and commonly used in everyday workflows. Voria et al. [25] also
surveyed practitioners on each practice’s perceived effectiveness, usage
frequency, and implementation effort.

However, their evaluation remains primarily qualitative, lacking
empirical validation of fairness impact across datasets of diverse ap-
plication domains. Specifically, it does not assess effectiveness across
application domains, ML tasks, or sensitive attributes, nor examine
trade-offs between fairness and performance. Building on our earlier
work [26], which provided preliminary insights into contextual effec-
tiveness and cost-performance trade-offs, this paper offers a broader
empirical evaluation across multiple tasks, models, and sensitive at-
tributes in real-world application contexts. In this way, we explicitly
integrate the methodological observations of the previous studies [23—
25] using them as a foundation for our final study. Indeed, acknowl-
edging the dataset- and task-dependence of ML fairness [50], our work
goes beyond fixed dataset-model evaluations [16,20]. The scientific
novelty of this study lies in its comprehensive, fine-grained empirical
assessment of individual fairness-aware practices, providing evidence-
based insights into their fairness impact and cost-effectiveness across
varied settings.
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Our Contribution.

We extend prior research [26] by evaluating fairness-aware prac-
tices across tasks, contexts, and sensitive attributes. We assess
their effectiveness in mitigating bias, conduct a cost-effective
analysis to examine the performance-fairness trade-offs, and offer
insights to select suitable fairness strategies based on contextual
information.

3. Research design

The goal of this empirical study is to evaluate the effectiveness
of fairness-aware practices in mitigating bias across different datasets
and with different tasks and sensitive attributes, following and ex-
panding the design of preliminary research [26]. Its purpose is to
assess their impact and associated performance trade-offs across dif-
ferent application scenarios. The study addresses the perspective of
both researchers—interested in performance implications under spe-
cific settings—and practitioners-seeking guidance on integrating fair-
ness practices into ML workflows. To this end, we define two research
questions.

First, we aimed to quantitatively assess the impact of fairness-aware
practices on mitigating bias on specific ML tasks. Building on prior
qualitative work based on expert opinions [25], as well as empirical
studies evaluating different specific techniques [16,20], we sought
to offer comprehensive with a systematic assessment to determine
whether these practices improve fairness across different tasks, sensi-
tive attributes, and application domain. This evaluation was performed
in the context of our first research question:

RQ; - Fairness Evaluation

To what extent can fairness-aware practices mitigate bias when
applied to different tasks, contexts, and sensitive attributes?

Our second objective was to investigate the performance trade-
offs associated with fairness-aware practices, as it is a fundamental
challenge in fairness research [20]. The results of the first RQ guided
our investigation, revealing which fairness-aware practices effectively
mitigate bias. However, improving fairness often comes at the cost
of reduced model performance [16,20], raising a critical challenge
for both researchers and practitioners. Understanding the trade-off
between fairness gains and performance loss is essential for making
informed decisions about adopting fairness-aware practices in real-
world applications. Without this knowledge, practitioners risk applying
techniques that enhance fairness but render models impractical for
deployment. Therefore, we needed to examine the extent to which
fairness improvements come at the cost of performance, allowing us
to assess the feasibility of these practices on datasets across different
contexts, leading to the definition of our second research question:

RQ, - Cost-Effectiveness Evaluation

What is the cost in terms of performance loss against fairness
improvements given by the application of the practices?

Fig. 1 provides an overview of our research approach, illustrating
the method used to address these research questions. The process
begins with the selection of datasets and related ML tasks [19], and
then the fairness-aware practices [25]. Afterward, we train models
related to the tasks without any practice. Once trained, these mod-
els are evaluated based on fairness by using the sensitive attributes
available in the datasets and performance metrics to get a comparison
baseline. Finally, we repeat the same process for each fairness-aware
practice selected, applying it before training the models. Our study
follows the empirical research standards, adhering to the guidelines of
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Fig. 1. Overview of the research method proposed for our study.

Wohlin et al. [51] and the ACM/SIGSOFT Empirical Standards [52],!
specifically aligning with the “General Standard” due to the nature of
our investigation.

3.1. Objects of the study

The fairness-aware practices evaluated in this study [23] were
selected based on a recent expert survey [25], which assessed their
fairness impact, usage frequency, and implementation effort. We se-
lected practices that presented a balanced mix of positive fairness
impact, good adoption in practice, and feasible integration into an
automated evaluation pipeline. Many excluded practices, although po-
tentially valuable, were not suited for scalable experimentation due
to their reliance on substantial human intervention or lack of mature
tool support. For example, practices in the ‘Requirements Engineer-
ing’ or ‘Software Testing’ categories require domain-specific manual
setup or infrastructures that are either not publicly available or not
generalizable across multiple learning tasks and datasets. The practices
selected were well-suited for a detailed quantitative evaluation across
diverse datasets, tasks, and sensitive attributes. Below, we outline each
category, the selected practices, rationale, and implementation choices;
Table 1 summarizes this information.

+ Data Balancing mitigates bias in unbalanced datasets [53]. It is
considered effective, with medium-high fairness impact and low
implementation effort [25]. Oversampling increases the minority
class frequency; we apply Simple Oversampling, which duplicates
underrepresented samples but may risk overfitting. Undersampling
reduces the dominant class size [19,53]; we use Simple Under-
sampling to achieve class balance by removing majority class
instances.

Data Transformation aims to homogenize feature distributions
[54]. Though it requires medium-to-high effort, its fairness im-
pact is significant [25]. Techniques include: Iterative Imputer,
which estimates missing values from other features; Select Best,
which chooses features based on statistical relevance; and Simple
Imputer, which fills missing values with the mean, median, or
mode [19,54,55].

Feature Standardization ensures all features contribute equally to
the model [56]. It offers medium-to-high fairness impact with
low implementation effort [25]. We use MinMax Scaling, which
normalizes values to ensure uniform feature contributions [57].
Parameter Regularization promotes fairness across subpopulations
[58,59]. Despite its high implementation effort, it has strong fair-
ness potential [25]. This practice introduces constraints, such as
penalties, to reduce prediction disparities and mitigate bias [19].

1 Available at: https://github.com/acmsigsoft/EmpiricalStandards.

» Metamorphic/Mutation Testing assess prediction consistency under
data variations [54]. Chosen for their fairness impact and low
implementation effort [25], these techniques modify data to test
model robustness [19]—e.g., adding random noise to verify if a
classifier preserves labels.

3.2. Subjects of the study

Datasets Selection. To evaluate fairness-aware practices across
domains, we selected widely used datasets in fairness research and
in the literature [19,49]. Beyond popularity, our selection was also
guided by the goal of ensuring diversity across key dimensions: appli-
cation domain (e.g., healthcare, education, economics), learning tasks
(e.g., classification, regression), and sensitive attributes. These datasets
offer variability in structure, target variables, and fairness concerns,
supporting a multifaceted evaluation. Moreover, each dataset reflects
a distinct context and includes sensitive attributes explicitly defined
in the official documentation [19]. The selected datasets are visible in
Table 2.

» COMPAS dataset (Recidivism prediction): Contains 2013-2014 data
used to estimate recidivism risk. This justice-related dataset influ-
ences decisions that may perpetuate social and racial inequalities.
Sensitive attributes: Sex, Race [19,49].

Adult dataset (Economics): Based on U.S. census data, it predicts
whether an individual earns over $50,000, highlighting economic
disparities. Sensitive attributes: Sex, Race [19,49].

Bank Marketing dataset (Marketing): Includes data from a Por-
tuguese bank’s 2008-2013 campaigns to predict deposit sub-
scription, where biased targeting may arise. Sensitive attributes:
Marital status, Age [19,49].

German Credit dataset (Finance): Evaluates credit risk to determine
loan eligibility, where fairness is crucial for equitable access to
financial services. Sensitive attributes: Gender status, Age [19,49].
Communities and Crime dataset (Crime): Gathers data from 46 U.S.
states to predict violent crime rates, enabling analysis of indi-
rect discrimination at the community level. Sensitive attribute:
Race [19,49].

Tasks Selection. The selection of machine learning tasks for each
dataset was guided by the task—-context ontology introduced by Fabris
et al. [19], which systematically maps commonly used datasets to
fairness-related tasks. To maintain consistency with this ontology and
ensure reproducibility, we selected tasks that (i) had been previously
implemented in the referenced studies and (ii) could be instantiated
with available public data and standard tooling. Moreover, we prior-
itized tasks that appeared across multiple datasets, to preserve com-
parability and avoid dataset-specific bias in the evaluation. Table 2
summarizes these tasks and their association with the datasets.
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Table 1
Fairness-Aware Practices Selected for Our Study.
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Practice category Practice Description
implementation

Data Balancing Oversampling Increases the frequency of the minority class
Undersampling Reduces samples from the dominant class

Data Transformation Iterative Imputer
Select Best

Simple Imputer

Replaces missing values based on estimates from other
features

Selects the most relevant features

Replaces missing values with mean, median, or mode

Feature Standardization MinMax Scaling

Normalizes values to a specific range

Parameter Regularization Regularization

Adds penalties to reduce prediction disparity

Metamorphic/Mutation Testing Input Variation

Modifies input data (e.g., adding noise)

* Classification is an ML task aiming to treat similar individuals
similarly [33,60]. Fairness is typically addressed by equalizing
measures across subpopulations [19,33,60]. This work considers:
Random Forest, a tree-based method; Logistic Regression, which
models class probabilities via the logistic function; Extreme Gradi-
ent Boosting (XGBoost), an iterative tree-based algorithm; Decision
Tree, which splits data by feature values; and Naive Bayes, a
probabilistic classifier using Bayes’ theorem.

Regression is essential in predictive modeling [61]. Individual
fairness provides similar predictions to similar individuals and
distributing losses uniformly [19,61]. We consider: Decision Tree,
which splits data to minimize error on a continuous target; and
Linear Regression, which models the relationship between vari-
ables using a linear equation.

Clustering partitions data into homogeneous groups based on fea-
ture similarity [62]. Fairness is defined by balanced subgroup dis-
tribution or average distance to cluster centers [19,62]. We con-
sider: K-means, minimizing intra-cluster variance; K-center, reduc-
ing maximum point-centroid distance; and K-median, minimizing
absolute differences.

While datasets such as Adult and COMPAS may appear similar
in terms of features and sensitive attributes, the number and type
of tasks assigned to each were based on their documented usage in
prior fairness studies [20,48]. For example, the Adult dataset is widely
used across a broad range of fairness tasks — particularly clustering
and regression — making it a good candidate for multi-task evaluation.
In contrast, although COMPAS appears in the ontology with multiple
tasks, many of them are either highly specialized (e.g., fairness in
transfer learning) or difficult to apply consistently across other datasets.
Therefore, tasks were assigned to datasets not only based on technical
feasibility (e.g., clustering applicability), but also on relevance and
replicability according to Fabris et al.’s mapping [19].

Metrics Selection. For each task, we selected both fairness and
performance metrics at the group level, following established litera-
ture [63-65]. In order to evaluate disparities between different demo-
graphic groups. As shown in Table 3, we measured performance and
fairness for each of the three ML tasks selected, namely classification,
clustering, and regression.

» To assess performance, we employed task-specific metrics [66—
68]. For classification models, we measured Accuracy, which quan-
tifies the percentage of correctly classified instances; Precision,
which indicates the proportion of true positive predictions among
all predicted positives; Recall, which evaluates ability to identify
all positive instances correctly; and FI-score, which represents
the harmonic mean of Precision and Recall [66]. In clustering
tasks, we used the Silhouette Coefficient, which captures both
the cohesion within clusters and their separation from one an-
other [67]. For regression, we relied on Mean Squared Error (MSE),
which computes the average squared difference between pre-
dicted and actual values, and Median Absolute Deviation (MAD),
which measures the median of absolute deviations from the pre-
dicted values [68].

» To assess fairness, we applied different metrics depending on
the task [63-65]. All the selected fairness metrics operate at the
group level, as our evaluation specifically focuses on measuring
disparities between demographic groups. In classification, we eval-
uated Average Absolute Odds Difference (AAOD), which quantifies
disparities in true and false positive rates between demographic
groups; False Discovery Rate Difference (FDRD), which assesses
imbalances in false positive rates, revealing disparities in incor-
rect classifications; and Disparate Impact (DI), which compares
the proportion of positive outcomes between protected and non-
protected groups [63]. Unlike the other metrics, DI is centered
around one rather than zero. To ensure consistency across fair-
ness measures, we adjusted it by subtracting one, aligning its
balance point with the other metrics without altering its funda-
mental meaning. For clustering tasks, fairness was evaluated using
Average Euclidean (AE) distance and Maximum Euclidean (ME)
distance, which measure the average and maximum distances
between cluster centroids, respectively, as well as Average Wasser-
stein (AW) distance and Maximum Wasserstein (MW) distance,
which provide analogous measures based on the Wasserstein
distance [64]. Finally, in regression tasks, we assessed fairness
using Independence, which verifies whether predictions are un-
correlated with membership in a protected group; Separation,
which considers both the protected group and the target variable
when evaluating fairness; and Sufficiency, which ensures that the
model’s predictions contain all necessary information to estimate
the target value [65].

3.3. Data collection and analysis

For both research questions, we conducted experiments using the
selected tasks and datasets. Each model of the selected task was trained
independently for its respective dataset without applying any fairness-
aware practices. When multiple sensitive attributes were available in
a dataset, we conducted separate training runs for each attribute.
Additionally, we only applied fairness practices that were compatible
with the specific task—for example, techniques that modify the target
variable were not used in unsupervised tasks like clustering. Each
training sessions was repeated 20 times. This repeated training was
based on methodological guidance for the statistical analysis of results
of non-deterministic algorithms in software engineering by Arcuri and
Briand [69]. Hence, we adopted a replication strategy that balances
reliable estimation, sufficient paired observations for non-parametric
significance tests, and a computational budget that is feasible across all
configurations. This balance led us to perform 20 independent training
runs for configuration, as also done by other studies in the software
engineering and fairness literature [70]. In particular, for classification
and regression tasks, we used 10-fold cross-validation [71], averaging
the results across the 10 evaluations for each of the 20 training runs. In
contrast, clustering training runs were conducted 20 times, each with
varying numbers of clusters. We then assessed fairness and performance
levels to establish a baseline for both research questions.
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Table 2
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Datasets representing each context of our study. For each dataset, we report the sensitive attributes and tasks selected for
our evaluation. Task assignment was guided by the ontology from Fabris et al. [19], considering prior use in fairness studies,

reproducibility, and technical feasibility across datasets.

Dataset Sensitive attributes Tasks

Compas Sex, Race Classification - Random Forest
Classification - Logistic Regression
Classification - XGBoost

Adult Sex, Race Classification - Random Forest

Classification - Logistic Regression
Classification - XGBoost
Clustering - K-mean

Clustering - K-center

Clustering - K-median

Bank Marketing

Age, Marital

Classification - Random Forest
Clustering - K-mean
Clustering - K-center
Clustering - K-median

German Credit Age, Gender Classification - Random Fores
Classification - Logistic Regression
Classification - XGBoost
Classification - Decision Tree

Communities and Crime Race Classification - Decision Tree

Classification - Naive Bayesian
Classification - Logistic Regression
Regression - Linear Regression
Regression - Decision Tree

Table 3

Fairness and Performance metrics selected to evaluate each task.

Tasks Fairness metrics Performance metrics
Classification Average Abs Odds Difference (AAOD) Accuracy
False Discovery Rate Difference (FDRD) Precision
Disparate Impact (DI) Recall
Fl-score
Clustering Average Euclidean (AE) distance Silhouette Coefficient
Maximum Euclidean (ME) distance
Average Wasserstein (AW) distance
Maximum Wasserstein (MW) distance
Regression Separation Mean Squared Error (MSE)
Sufficiency Median Absolute Deviation (MAD)
Independence

Next, we retrained the same ML models, this time applying the
fairness-aware practices individually. Similar to the baseline experi-
ments, each training run was repeated 20 times, allowing us to con-
duct a second round of evaluations for fairness and performance.
In total, including both the baseline and the additional experiments,
we conducted 5940 experiments, expanding from our initial set of 45
experiments [26]. RQ,—Fairness Evaluation. To verify the signifi-
cance of the obtained results, we adopted an approach consistent with
the preliminary study [26], applying the Shapiro-Wilk and Wilcoxon
signed-rank tests to assess fairness outcomes. These tests allowed us to
determine that the differences in metric distributions across repeated
runs are statistically significant and observe that they are unlikely to
be due to random variation. Nonetheless, they do not in themselves
indicate improvements in fairness. Rather, fairness improvements are
grounded in the observed reductions of group fairness disparities, as
measured by metrics such as Demographic Parity Difference and Equal
Opportunity Difference. In other terms, statistical significance is used
to support the robustness of these improvements across multiple runs.

Specifically, the context of our first research question, the eval-
uation focused exclusively on fairness metrics. The objective was to
determine whether the application of fairness-aware practices resulted
in measurable improvements in fairness across each of the selected
datasets. Unlike the previous study [26], we broadened the scope of
this evaluation, shifting the focus toward individual practices. First, we
increased the robustness of the experiments by repeating each run 20
times for every task and sensitive attribute. This allowed us to apply

statistical tests to verify whether each practice led to a statistically
significant increase in fairness compared to the baseline across all
the analyzed metrics. Hence, the application of the tests can confirm
the consistency and robustness of the statistical significance improve-
ments across multiple training runs, rather than their effectiveness in
isolation.

We began by analyzing the normality of the data to select the most
appropriate statistical methods. The Shapiro-Wilk test [72] conducted
with a significance level of « = 0.05, revealed that not all datasets
followed a normal distribution. As a result, we adopted non-parametric
methods. Specifically, we applied the Wilcoxon signed-rank test [73]
to compare the baseline with the experiments incorporating fairness-
aware practices, testing the null hypothesis of no significant difference.
The use of the Wilcoxon test allowed us to compute p-values and
directly assess statistical significance. In addition to assessing statistical
significance, we computed the effect size to quantify the magnitude of
the observed differences. We employed the Cliff’s Delta test [74], which
quantifies the degree of overlap between two distributions, offering
an intuitive interpretation of the probability that a randomly selected
observation from one group will be greater than a randomly selected
observation from the other. This allowed us to evaluate not only
whether fairness-aware practices resulted in statistically significant
improvements but also the practical relevance of these improvements
against the baseline.

RQ,—Cost-Effective Evaluation. For the second research question,
we followed the same approach adopted in the first concerning the
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experiments, based on the methodologies of the preliminary study [26].
After calculating the performance and fairness metrics, we conducted
a cost-effectiveness analysis [75]. This technique, used to quantify the
relationship between the cost and effectiveness of an intervention,
was elaborated in the preliminary study. We evaluated each fairness-
aware practice applied during the training of the ML model with
respect to a specific sensitive attribute, assessing its effectiveness in
improving fairness versus its cost in terms of model performance loss.
This approach allowed us to quantify and identify the most efficient
technique for balancing fairness and performance. For each experiment
in which a fairness-aware practice was applied, we calculated two
fundamental measures: Cost, that is, the difference in performance
between the baseline model (B) without practices and the model (I)
incorporating fairness-aware practices. Effectiveness that is, the differ-
ence in fairness metrics between fairness-aware models (I) and baseline
models (B).

With these two measures, we computed a cost-effectiveness (CE) ratio
as follows:

Performancep — Performance;
Fairness; — Fairnessg

This metric allowed us to compare fairness-aware practices and
identify the one that improves fairness with the least negative impact
on performance. The formula was designed with the understanding
that smaller fairness metrics indicate better equity, while higher per-
formance metrics reflect greater model efficiency. For the Regression
task, where MSE and MAD are error-based metrics, we inverted the
performance loss value to align with the other metrics.

A CE ratio close to zero indicates an ideal trade-off, where fairness
improvements are achieved with minimal performance loss. CE values
greater than 1 indicate that fairness gains come at a disproportionate
performance cost, potentially undermining model utility. Conversely,
CE values less than —1 suggest performance improvements at the
expense of fairness, which conflicts with ethical objectives. Therefore,
practices with CE ratios between —1 and 1 suggest a balanced rela-
tionship, where fairness gains are typically made without significantly
sacrificing performance, or even with gains in both fairness and per-
formance. In particular, when both fairness and performance improve
(i.e., CE < 0 and the denominator is positive), the fairness-aware
practice yields a win-win outcome and is especially desirable. On the
other hand, if both fairness and performance worsen (i.e., CE > 0 and
both differences are negative), the practice should be reconsidered, as
it may harm both model utility and ethical objectives.

We also note that the CE ratio should be interpreted with cau-
tion, especially when considered in isolation. In practical applica-
tions, it is important to examine the individual fairness and perfor-
mance differences alongside the CE value, as this provides a more
nuanced understanding of how a given practice behaves in a specific
context.

For each combination of dataset, task, sensitive attribute, and prac-
tice, we calculated the CE for every performance and fairness metric
across 20 experiments, capturing a comprehensive view of trade-offs.
We then aggregated these CE values to derive a single general CE
ratio per practice, representing its overall balance between fairness and
performance.

Cost-effectiveness =

4. Analysis of the results

In this section, we present the results of the empirical study. All
the data and scripts used to collect results and answer our research
questions are available in our online appendix [31]. The discussion of
the results is organized around each dataset to improve readability and
clarity. However, since model-specific trends could provide additional
insights into the effectiveness of fairness-aware practices, we provide
additional analyses for further reading in our online appendix [31].
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4.1. RQ;—Fairness evaluation

To answer RQ,, we conducted a comprehensive experimental anal-
ysis. Each task was trained on its corresponding dataset, and fair-
ness metrics were computed with and without applying the practices,
considering sensitive attributes. To assess significance, we used the
Wilcoxon signed-rank test [73], and calculated Cliff’s Delta [74] to
estimate effect size. Descriptive statistics were also computed and are
available, alongside full experimental data, including non-significant
results and all metrics, in our online appendix [31] for transparency
and reproducibility.

Dataset for the Recidivism Context. We assessed the practices
in this context through the COMPAS dataset using three classification
tasks, i.e., Random Forest, Logistic Regression, and XGBoost. In partic-
ular, Table 4 shows the results of our statistical analysis, only reporting
practices for which the fairness score significantly changed for at least
one metric and sensitive attribute.

For the classification task using Random Forest, Mutation Testing
emerged as the most effective approach, demonstrating significant
fairness improvements across multiple metrics. It showed positive shifts
toward greater fairness for both Sex and Race attributes in FDRD
metrics (0.048 and 0.035, respectively), and for Sex in DI (0.160). Reg-
ularization also performed notably well, particularly in FDRD metrics
for both Sex (0.043) and Race (0.045).

In Logistic Regression models, Select Best demonstrated the most
consistent improvements. It showed particular strength in FDRD for
both Sex (0.023) and Race (0.037). Mutation Testing also performed
strongly, especially for FDRD Sex (0.018), with the most substantial
fairness improvement across all techniques. Undersampling and Over-
sampling both showed significant fairness improvements for DI metrics,
with particularly strong results for Race (0.944 and 0.942, respec-
tively). XGBoost classification results revealed that Mutation Testing
provided the most consistent fairness improvements, with significant
positive shifts. Regularization also performed well across FDRD metrics
for both Sex (0.043) and Race (0.044).

iE Recidivism Context — COMPAS Dataset.

For this dataset, Mutation Testing consistently improves fairness
across classifiers, especially by reducing discrimination across sen-
sitive attributes. Regularization and Select Best also show strong
results, particularly with certain algorithms.

Dataset for the Economics Context. In this context, we evaluated
the Adult dataset [27] using three classification tasks and three cluster-
ing tasks. Tables 5 and 6 present our comprehensive results. For classifi-
cation tasks, fairness-aware practices showed varied effectiveness. With
Random Forest, Mutation Testing yielded significant improvements for
Sex in AAOD (0.020) and DI (0.160). In Logistic Regression, MinMax
Scaling was particularly effective for FDRD Sex (0.006), and Mutation
Testing showed notable gains in AAOD Sex (0.102), FDRD Sex (0.095),
and DI Sex (0.084). In XGBoost, both Select Best and MinMax Scaling
performed well in FDRD Sex (0.006 and 0.003), while Mutation Testing
improved AAOD (0.021) and DI (0.181) for Sex.

In clustering tasks, only MinMax Scaling and sampling-based ap-
proaches (Undersampling, Oversampling) showed effectiveness. MinMax
Scaling displayed remarkable consistency across K-means, K-center, and
K-median, improving all fairness metrics.

The outstanding performance of MinMax Scaling in clustering is
rooted in its technical properties [76,77]. By scaling features to a
uniform range, it prevents dominance by high-magnitude features in
distance calculations [78], which is crucial in clustering algorithms
reliant on such metrics. This mitigates bias from features correlated
with sensitive attributes [79,80].
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Table 4

RQ;—Results for the COMPAS dataset on classification tasks. Values in the cells indicate the mean value for each metric
across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at
least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@)
marks a shift toward greater fairness (delta < —0.5) based on effect size.

COMPAS Dataset AAOD FDRD DI
Classification - Random Forest ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
Iterative Imputer 0.121 |0.152 @ | 0.057 @ | 0.099 0.311 0.514
Oversampling 0.120 0.162 0.062 0.090 @ 0.299 0.524
Mutation Testing 0.123 1 0.072 @ | 0.048 @ | 0.035 @ | 0.160 @ | 0.105 @
Regularization 0.209 0.250 0.043 @ | 0.045 @ 0.488 0.985
Simple Imputer 0.125 0.153 | 0.057 @ 0.097 0.322 0.522
MinMax Scaling 0.119 0.162 0.064 0.092 0.298 0.524
Select Best 0.113 0.157 0.085 0.097 0278 @ | 0.498
Classification - Logistic Regression ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
Undersampling 0.219 0.249 0.029 0.046 0.496 @ | 0.944 @
Simple Imputer 0.221 0.245 0.032 0.046 0.519 0.996
Regularization 0208 @ | 0.251 0.043 0.045 0.486 0.991
Ovesampling 0.218 0.248 0.027 0.046 0494 @ | 0942 ©
Mutation Testing 0.228 |0.125 @ | 0.018 @ 0.069 0.819 1.053
Select Best 0212 @ | 0.256 0.023 @ | 0.037 @ | 049 @ | 1.012
MinMax Scaling 0.218 0.252 0.034 0.043 0.500 0.991
Tterative Imputer 0.222 0.246 0.030 0.046 0.520 0.999
Classification - XGBoost ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
Oversampling 0.163 0.198 0.057 0.075 0.395 0.718
Simple Imputer 0.155 [ 0.191 @ | 0.059 0.076 0.397 0.731
Regularization 0.207 0.250 | 0.043 @ | 0.044 © 0.485 0.987
Mutation Testing 0.124 @[ 0.095 @ | 0059 |0.041 @ | 0.168 @ | 0.148 @
Select Best 0.154 0.204 0.046 0.075 0.388 0.764
Iterative Imputer 0.153 0.194 0.061 0.074 0.392 0.744
MinMax Scaling 0.159 0.199 0.055 0.074 0.395 0.732
Table 5

RQ;—Results for the Adult dataset on clustering tasks. Values in the cells indicate the mean value for each metric across the
20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at least one
metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@) marks a

shift toward greater fairness (delta < —0.5) based on effect size.

Adult Dataset AAOD FDRD DI
Classification - Random Forest ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
Iterative Imputer 0.078 | 0.070 | 0.003 0.012 0.6878 0.574
Oversampling 0.094 0.078 | 0.004 0.010 0.683 0.558 @
Mutation Testing 0.020 @ | 0.144 | 0.102 0.130 | 0.160 @ | 0.6717
Regularization 0.070 @ | 0.067 | 0.010 0.008 0.705 0.591
Undersampling 0.147 0.085 | 0.019 0.035 0.670 @ | 0.502 @
MinMax Scaling 0.187 0.141 | 0.004 0.004 @ | 0.683 0.566
Select Best 0.077 0.065 0.048 0.041 0.660 @ | 0.535 @
Classification - Logistic Regression ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
Iterative Imputer 0.110 0.045 0.252 0.035 0.685 0.481
MinMax Scaling 0.190 0.120 | 0.006 @ | 0.010 @ 0.853 0.708
Mutation Testing 0.102 @ | 0.350 | 0.095 @ | 0.075 0.084 @ 1.351
Regularization 0.159 0.086 | 0.166 @ | 0.058 0.879 0.732
Undersampling 0.242 | 0.100 | 0.287 0.088 | 0.563 @ | 0.457 @
Select Best 0.176 0.075 | 0.013 @ | 0.034 0.842 0.595
Oversampling 0.236 0.101 0.288 0.091 0.558 @ | 0.456 @
Classification - XGBoost ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
MinMax Scaling 0.188 0.145 | 0.003 @ | 0.009 0.673 0.561
Mutation Testing 0.021 @ | 0.124 | 0.116 0.156 0.181 @ 0.594
Oversampling 0.151 0.100 | 0.012 0.011 0.700 0.556 ©
Undersampling 0.146 0.094 | 0.020 0.030 0.673 @ 0.524
Select Best 0.067 @ | 0.074 | 0.006 @ | 0.009 0.675 0.588
Regularization 0.071 0.070 | 0.011 0.008 0.678 0.577
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Table 6
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RQ;—Results for the Adult dataset on clustering tasks. Values in the cells indicate the mean value for each metric across the
20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at least one

metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@) marks a

shift toward greater fairness (delta < —0.5) based on effect size.

Clustering - k-mean ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
MinMax Scaling 1.0744 @ | 0.4013 | 1.0847 @ | 0.4792 @ 00 0.0123 @ 00 0.0123 @
Undersampling 6023 6928 43584 17716 0.1889 0.176 0.1889 0.176
Oversampling 7112 7614 59328 17642 0.1928 0.1567 0.1928 0.1567
Clustering - K-center ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
MinMax Scaling 1.188 @ (0462 @ | 1331 @ | 0.659 @ |0.065 @ | 0.081 @ |0.065 D@ | 0.081 @
Undersampling 19288 9881 @ 64080 16552 0.180 0.172 0.180 0.172
Oversampling 17876 18609 71572 31747 0.154 0.190 0.154 0.190
Clustering - K-median ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race ‘ Sex ‘ Race
MinMax Scaling 1123 @ (0411 @ | 1.169 @ | 0.561 @ |0.056 @ | 0.034 @ |0.056 @ | 0.034 @
Oversampling 2607 5921 17819 14732 0.192 0.148 @ 0.192 0.148 @
Undersampling 2428 6518 15278 24428 0.192 0.181 0.192 0.181
Table 7

RQ;—Results for the Bank dataset on classification tasks. Values in the cells indicate the mean value for each metric across
the 20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at least one

metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@) marks a

shift toward greater fairness (de/ta < —0.5) based on effect size.

Bank Marketing Dataset AAOD FDRD DI
Classification - Random Forest ‘ Age ‘ Marital ‘ Age ‘ Marital ‘ Age ‘ Marital
Iterative Imputer 0.021 0.019 0.020 0.021 0.050 0.020
MinMax Scaling 0.019 0.020 0.004@ | 0.013 0.011 | 0.013Q
Mutation Testing 0.035 | 0.016@ | 0.050 0.015 0.100 |  0.100
Oversampling 0.020 0.020 | 0.007@ | 0.008@ | 0.011 0.026
Undersampling 0.013@ | 0.014@ | 0.018 | 0.009Q | 0.013 0.046
Regularization 0.021 0.021 0.005@ | 0.013 0.032 | 0.016 @
Select Best 0.021 0.022 0.009@ | 0.005@ | 0.036 | 0.031
Simple Imputer 0.023 0.021 0.031 0.019 | 0.032 | 0.024

Table 8

RQ;—Results for the Bank dataset on clustering tasks. Values in the cells indicate the mean value for each metric across the
20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at least one

metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@) marks a

shift toward greater fairness (de/ta < —0.5) based on effect size.

Bank Marketing Dataset

Clustering - k-mean ‘ Age ‘ Marital ‘ Age ‘ Marital ‘ Age ‘ Marital ‘ Age ‘ Marital
MinMax Scaling | 09040 [ 0.348@] 0989@ [ 0361 Q[ 0.089Q [ 0.007@ [ 0.089@ [ 0989 D
Clustering - K-center ‘ Age ‘ Marital ‘ Age ‘ Marital ‘ Age ‘ Marital ‘ Age ‘ Marital
MinMax Scaling 0985@ | 0384@ | 1395@ | 0.536@ | 0.151 0.036@ | 0.151 0.036 @
Oversampling 173.726 @ | 65915 | 267.648 | 218.714 0.179 0.106 0.179 0.106
Undersampling - 56.890 - 110.410 - 0.1475 - 0.147
Clustering - K-median |  Age | Marital | Age | Marital [ Age [ Marital [ Age | Marital
Oversampling 357.980 7.808 | 631.949 | 24427 0.141 0.01 0.141 0.01
MinMax Scaling 0.962@ | 0.348Q | 1.112Q | 0366@ | 0.137 0.006 0.137 0.006
Undersampling - 64.069 - 295.403 - 0.108 - 0.108

i= Economics Context — Adult Dataset.

For this dataset, the classification tasks demonstrated effectiveness,
particularly with Mutation Testing, Select Best, and Sampling strate-
gies. Moreover, the clustering results suggest that MinMax Scaling
should be prioritized when addressing fairness concerns in unsuper-
vised learning contexts.

Dataset for the Marketing Context. This evaluation was per-
formed using the Bank Marketing dataset [28] dataset using one clas-
sification task and three clustering tasks, as illustrated in Tables 7 and
8.

For classification tasks using Random Forest, several fairness-aware
practices proved effective. MinMax Scaling notably improved FDRD for
Age (0.004) and DI for Marital Status (0.013). Sampling-based meth-
ods consistently benefited FDRD: Oversampling improved Age (0.007)
and Marital Status (0.008); Undersampling enhanced AAOD for Marital
Status (0.014) and FDRD for Marital Status (0.009). Select Best was
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Table 9

RQ;—Results for the German Credit dataset on classification tasks. Values in the cells indicate the mean value for each metric
across the 20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at
least one metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@)

marks a shift toward greater fairness (delta < —0.5) based on effect size.

German Credit Dataset

Classification - Random Forest ‘ Age ‘ Gender ‘ Age ‘ Gender ‘ Age ‘ Gender
Select Best 0.118 0.117 0.054 0.099 0.487 0.456
Mutation Testing 0.036Q | 0.034Q@ | 0.029 | 0.0209Q | 0.484 0.389 @
Oversampling 0.111 0.124 0.031 0.102 0.447 0316 @
MinMax Scaling - - 0.04 0.017 @ - 0.497
Classification - Logistic Regression ‘ Age ‘ Gender ‘ Age ‘ Gender ‘ Age ‘ Gender
Undersampling 0.137 0.148 0.02 0.082 0415 @ | 0312 @
Oversampling 0.145 0.139 0.018 0.081 0.372Q | 0.308 @
Select Best 0.121 0.143 0.027 0.035 @ - 0.790
Regularization 0.119 0.133 0.032 0.049 - 0.752
Mutation Testing 0.034 @ | 0.086@ | 0.011 0.013Q | 0.029Q | 0.309Q@
Tterative Imputer 0.128 0.139 0.042 0.053 - 0.742
MinMax Scaling - - 0.012 0.015Q@ 0.706 0.807
Classification - XGBoost ‘ Age ‘ Gender ‘ Age ‘ Gender ‘ Age ‘ Gender
Mutation Testing 0.040Q | 0.031@ | 0.029 0.015@ | 03000 | 0.138@
Regularization 0.114 0.134 0.023 @ 0.044 0.548 0.755
Undersampling 0.138 0.127 0.032 0.058 0.345Q | 0218Q
MinMax Scaling - - 0.028 0.012Q - 0.406
Classification - Decision Tree ‘ Age ‘ Gender ‘ Age ‘ Gender ‘ Age ‘ Gender
Mutation Testing 0.039Q | 0.043Q | 0.010Q | 0.010@ | 0.023Q | 0.0480Q
Regularization 0.111 0.136 0.029 0.045 0.520 0.768
Select Best 0.133 0.130 0.0411 0.068 0.311 0.269
Oversampling 0.141 0.125 0.043 0.093 0.436 0.217
Undersampling 0.141 0.139 0.035 0.062 0.201 0.138
MinMax Scaling - - 0.018@ | 0.017@ | 0.267 0.155

particularly effective for FDRD Marital Status (0.005), while Regular-
ization improved FDRD Age (0.005) and DI Marital Status (0.016). In
clustering tasks, MinMax Scaling showed strong effectiveness across
all three algorithms (K-means, K-centers, K-median) and fairness met-
rics. The notable effectiveness of MinMax Scaling in clustering is due
to its transformation of the feature space [76,77]. Normalization is
key to reducing the influence of features correlated with sensitive
attributes [78-80].

iE Marketing Context — Bank Marketing Dataset.

The analysis of this dataset confirms that while several methods
enhance fairness in classification, MinMax Scaling stands out in
clustering for its consistent and comprehensive fairness improvements
across all algorithms and metrics.

Dataset for the Finance Context. We used the German Credit
dataset [29] on four classification tasks. As shown in Table 9, our
experiments revealed several patterns in fairness improvements.

Mutation Testing was consistently effective across all classification
algorithms. For Decision Tree models, it delivered strong fairness im-
provements for both Age and Gender (AAOD Age: 0.039, AAOD Gender:
0.043, FDRD Age: 0.010, FDRD Gender: 0.010, DI Age: 0.023, DI Gen-
der: 0.048). A similar pattern was observed in XGBoost, with Mutation
Testing.

In Random Forest models, Mutation Testing again performed well,
improving AAOD for Age (0.036) and Gender (0.034), FDRD Gen-
der (0.0209), and DI Gender (0.389). Additionally, a separate imple-
mentation of MinMax Scaling showed strong results in FDRD Gender
(0.017). In Logistic Regression, effective techniques were more varied:
Mutation Testing maintained good performance across most metrics
(AAOD Age: 0.034, AAOD Gender: 0.086, FDRD Gender: 0.013, DI
Age: 0.029, DI Gender: 0.309), while MinMax Scaling improved FDRD

for both Age (0.012) and Gender (0.015). Across all classification
models, FDRD improvements were achieved through multiple tech-
niques. For the DI metric, sampling-based methods (Undersampling and
Oversampling) were particularly effective in Logistic Regression and
XGBoost.

iE Finance Context — German Credit Dataset.

For this dataset, Mutation Testing offers the most consistent and com-
prehensive fairness gains across classifiers and sensitive attributes.
However, techniques like MinMax Scaling (for FDRD) and sampling-
based methods (for DI) demonstrate the value of tailoring fairness
strategies to specific concerns and algorithms.

Dataset for the Crime Context. We evaluated the Communities and
Crime dataset [30] using three classification tasks and two regression
tasks. As illustrated in Tables 10 and 11, our analysis revealed several
notable patterns in fairness improvements across different algorithms
and mitigation techniques.

For classification tasks, Mutation Testing consistently delivered su-
perior fairness improvements across all three algorithms. In Decision
Trees, it significantly improved all three metrics, with notable results
in FDRD (0.029) and DI (0.224). Similarly, in Naive Bayes, it achieved
substantial gains in AAOD (0.231), FDRD (0.017), and DI (0.223). This
trend continued in Logistic Regression (AAOD: 0.311, FDRD: 0.021, DI:
0.357).

In regression tasks, Mutation Testing improved all metrics in both
Linear Regression and Decision Trees. In Linear Regression, it yielded
optimal results for Separation (1.009), Sufficiency (1.009), and Inde-
pendence (1.003). This pattern held in Decision Tree regression as well
(Separation: 1.020, Sufficiency: 1.019, Independence: 1.003). Select
Best also performed well.

10
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Table 10
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RQ;—Results for the Crime dataset on classification tasks. Values in the cells indicate the mean value for each metric across
the 20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at least one

metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@) marks a

shift toward greater fairness (delta < —0.5) based on effect size.

AAOD

Communities and Crime Dataset

Classification - Decision Tree Race ‘ Race ‘ Race
Iterative Imputer 0.301 | 0.320 @ 3.015
Select Best 0.349 0.319 3.157
Regularization 0324 | 0270 @ | 3.701
Undersampling 0.322 0.361 2.027 @
Mutation Testing 0.189 @ | 0.029 @ | 0.224 @
Oversampling 0.300 0.319 3.110
MinMax Scaling - 0.007 @ | 3.019
Classification - Naive Bayes ‘ Race ‘ Race ‘ Race
Select Best 0.231 0.159 @ 6.076
Mutation Testing 0231 @ | 0.017 @ | 0.223 @
Regularization 0.372 0232 @ 3.536
MinMax Scaling - 0.006 @ | 3.420
Classification - Logistic Regression ‘ Race ‘ Race ‘ Race
Select Best 0.470 @ 0.10 8.758
Iterative Imputer 0.365 0.110 5.909
Regularization 0.401 0.083 @ 6.942
Undersampling 0.420 0.202 3.295 @
Oversampling 0.401 0.200 | 3.376 @
Mutation Testing 0311 @ | 0.021 @ | 0357 @
MinMax Scaling - 0.012 @ 591

iE Crime Context — Communities and Crime Dataset.

For this dataset, Mutation Testing yields the most consistent fairness

improvements across classification and regression. MinMax Scaling
is particularly effective for classification FDRD metrics, while Select
Best shows strength in regression tasks.

RQ; — Summary of the Results.

Overall, Mutation Testing consistently delivers strong fairness im-
provements across Recidivism, Finance, and Crime datasets in
both classification and regression. In Economics, MinMax Scal-
ing is key for unsupervised learning and performs reliably in
Bank Marketing clustering. While these two methods excel across
datasets, Select Best and sampling also show promise in specific
scenarios, highlighting the need for context and dataset-specific
fairness strategies across diverse ML tasks.

4.2. RQ,—Cost-effective evaluation

For RQ,, we evaluated the models’ performance using a cost-
effectiveness (CE) analysis to identify practices that improve fairness
with the least negative impact on performance. For each task, we
consider the average CE ratio for every combination of performance
and fairness metrics, calculated across different practices, sensitive
attributes, and datasets.

Undersampling. The analysis of the results obtained with the prac-
tice of Undersampling, visible in Table 12, highlights a significant vari-
ability in CE values, influenced by the dataset, the model used, and the
sensitive attribute considered. In some cases, such as Logistic Regres-
sion on COMPAS with the Race attribute (CE = 0.042), it had minimal
impact on performance, suggesting a good trade-off between fairness
and accuracy. However, in other scenarios, the loss in performance
outweighed the gains in fairness, as seen with XGBoost on Adult for
the Sex attribute (CE = —45.841). On the other hand, led to simultane-
ous improvements in both fairness and performance, such as Logistic

11

Regression on COMPAS for the Sex attribute (CE = 4.262). Compared
to Oversampling, which also showed mixed results, Undersampling, in
all practices, generally demonstrated fewer extreme performance drops,
making it a more stable approach in certain application domains.

Oversampling. The analysis of Oversampling showed mixed results,
with significant variability depending on the dataset, model, and sen-
sitive attribute, as reported in Table 13. In some cases, it balanced
fairness and performance, such as Random Forest on COMPAS for Race
(CE = 2.199) and German Credit for Gender (CE = 2.494). However,
other cases saw severe performance drops, particularly XGBoost on
Adult for Race (CE = —158.781) and K-median clustering on Adult for
Race (CE = —50.889). While some models, like Logistic Regression on
COMPAS for Race (CE = 0.574), showed minor improvements. Notably,
all results highlight the need for careful evaluation before applying
Oversampling, as exhibited by a wider range of CE values, indicating
higher risk in terms of loss of performance but also greater potential
fairness benefits in selected cases.

Iterative Imputer. The Iterative Imputer exhibited a high cost in
terms of performance loss, with the obtained results reported in
Table 14. For example, Random Forest on COMPAS for the Race
attribute recorded a CE of —27.131, indicating a significant negative
impact. However, not all results were negative: Decision Tree on Crime
for the Race attribute (CE = 1.469) showed fairness benefits without
excessively compromising performance. Moreover, Linear Regression
on the Crime dataset for the Race attribute presented a CE of —0.268,
suggesting it may be less detrimental to performance. This method can
lead to significant fairness improvements, but it tends, in general, to
introduce more drastic performance losses.

Simple Imputer. The Simple Imputer showed variable results, as
represented in Table 15. In some cases, it significantly improved fair-
ness, such as with Random Forest on COMPAS for the Sex attribute
(CE = 10.474). This suggests that the imputation strategy effectively
mitigated bias without overly compromising performance. On the other
hand, its impact was more limited when applied to XGBoost on COM-
PAS for the Race attribute, which yielded a CE of 2.229. Generally led
to more positive CE values, making it a preferable imputation strategy
in application domains where minimizing performance loss is crucial.
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Table 11

RQ;—Results for the Crime dataset on regression tasks. Values in the cells indicate the mean value for each metric across the

20 experiments. Only fairness-aware practices with a statistically significant difference against the baseline for at least one

metric and sensitive attribute were reported. A Light Purple cell marks a significant difference. The arrow-up (@) marks a

shift toward greater fairness (delta < —0.5) based on effect size.

Communities and Crime Da Independence
Regression - Linear Regression ‘ Race ‘ Race ‘ Race
Iterative Imputer 10.983 @ | 4376 © 1.141
Undersampling 14.908 5.057 1.179
Simple Imputer 10.494 © 4.225 1.115
Select Best 17.034 8.553 1.001 @
MinMax Scaling 10.737 @ 4.343 1.104
Oversampling 15.947 5.485 1.120
Mutation Testing 1.009 @ | 1.009 @ 1.003 @
Regularization 12.781 @ 5.124 1.098
Regression - Decision Tree ‘ Race ‘ Race ‘ Race
Select Best 1385 @ | 1.142 @ 1.147 @
Regularization 3.197 1.762 1.518 @
Undersampling 3.13 1.770 1.79
Mutation Testing 1.020 @ | 1019 @ 1.003 @
Oversampling 2.393 1.456 1.756
Table 12

RQ,—Results for the Undersampling practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the average
cost-effectiveness ratio across the 20 experiments.

Undersampling

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Sex 4.262
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Race 0.042
Classification - Random Forest Economics (Adult Dataset) Sex —7.842
Classification - Random Forest Economics (Adult Dataset) Race —2.784
Classification - XGBoost Economics (Adult Dataset) Sex —45.841
Classification - Logistic Regression Economics (Adult Dataset) Sex —-0.204

Classification - Random Forest Marketing (Bank Marketing Dataset) Age 3.549
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 2.516
Classification - Decision Tree Crime (Communities and Crime Dataset) Race 0.163
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.248
Classification - XGBoost Finance (German Credit Dataset) Age -2.311
Classification - XGBoost Finance (German Credit Dataset) Gender -2.710

Classification - Logistic Regression
Classification - Logistic Regression

Finance (German Credit Dataset) Age 0.311
Finance (German Credit Dataset) Gender —-14.655

Clustering - K-center Economics (Adult Dataset) Race -2.910

Table 13
RQ,—Results for the Oversampling practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the average
cost-effectiveness ratio across the 20 experiments.

Oversampling

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Recidivism (COMPAS Dataset) Race 2.199
Classification - Logistic Regression Recidivism (COMPAS Dataset) Sex —4.074
Classification - Logistic Regression Recidivism (COMPAS Dataset) Race -0.574
Classification - Random Forest Economics (Adult Dataset) Race 1.463
Classification - Logistic Regression Economics (Adult Dataset) Race —-0.930
Classification - Logistic Regression Economics (Adult Dataset) Sex -0.215
Classification - XGBoost Economics (Adult Dataset) Race —-158.781
Classification - Random Forest Marketing (Bank Marketing Dataset) Age —-0.431
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 0.482
Classification - Random Forest Finance (German Credit Dataset) Gender 2.494
Classification - Logistic Regression Finance (German Credit Dataset) Age —0.008
Classification - Logistic Regression Finance (German Credit Dataset) Gender -0.228
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.107
Clustering - K-median Economics (Adult Dataset) Race -50.889
Clustering - K-center Marketing (Bank Marketing Dataset) Age —-0.760

Select Best. The Select Best technique generally yielded better
results than other practices, as can be observed in Table 16. Many
experiments reported CE values that provide a good trade-off between
fairness and performance. For instance, Linear Regression on Crime
for Race (CE = —0.741) and Logistic Regression on German Credit for
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Gender (CE = 3.190) demonstrated fairness improvements with mini-
mal performance loss. Similarly, Random Forest on Bank Marketing for
Marital (CE = 2.558) showed positive fairness outcomes. While some
models experienced performance drops, such as XGBoost on Adult for
Sex and Logistic Regression on COMPAS for Race. Overall, Select Best
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RQ,—Results for the Iterative Imputer practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the
average cost-effectiveness ratio across the 20 experiments.

Iterative Imputer

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Recidivism (COMPAS Dataset) Race -27.131
Classification - Random Forest Recidivism (COMPAS Dataset) Sex -3.338
Classification - Decision Tree Crime (Communities and Crime Dataset) Race 1.469

Regression - Linear Regression Crime (Communities and Crime Dataset) Race -0.268

Table 15

RQ,—Results for the Simple Imputer practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the
average cost-effectiveness ratio across the 20 experiments.

Simple Imputer

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Sex 10.474
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Race 2.229

Regression - Linear Regression Crime (Communities and Crime Dataset) Race 0.008

Table 16

RQ,—Results for the Select Best practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the average
cost-effectiveness ratio across the 20 experiments.

Select Best

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Recidivism (COMPAS Dataset) Sex -3.884
Classification - Logistic Regression Recidivism (COMPAS Dataset) Sex -12.091
Classification - Logistic Regression Recidivism (COMPAS Dataset) Race —5.009
Classification - Random Forest Economics (Adult Dataset) Race —-0.283
Classification - Random Forest Economics (Adult Dataset) Sex —24.700
Classification - XGBoost Economics (Adult Dataset) Sex -101.155
Classification - Logistic Regression Economics (Adult Dataset) Sex —-0.768
Classification - Random Forest Marketing (Bank Marketing Dataset) Age —-1.145
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 2.558
Classification - Logistic Regression Finance (German Credit Dataset) Gender 3.190
Classification - Naive Bayes Crime (Communities and Crime Dataset) Race -1.282
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race -3.282
Regression - Linear Regression Crime (Communities and Crime Dataset) Race —-0.741

stands out as one of the more effective techniques, yielding positive
fairness outcomes with fewer performance losses.

MinMax Scaling. The application of MinMax Scaling showed more
balanced CE values compared to other practices, as visible in Table
17. For Adult, most values were positive, such as XGBoost on Sex
(CE = 2.916) and Random Forest on Race (CE = 0.730). However,
some algorithms had negative impacts, such as Logistic Regression on
Race (—0.946). In the financial dataset, the technique produced some
highly positive values, such as Decision Tree on Age (CE = 25.943),
indicating an improvement in fairness with some performance loss. For
Crime, the results were more contained, with Logistic Regression (CE =
0.083) showing a balanced compromise. Compared to other techniques,
MinMax Scaling exhibited a more consistent balance between fairness
improvements and performance retention.

Regularization. The analysis of Regularization produced highly
variable CE values, as observed in Table 18, indicating that its impact
on fairness and performance strongly depends on the dataset and
model. Some models showed significant fairness gains, such as Naive
Bayes on Crime for Race (CE = 31.642) and Logistic Regression on
COMPAS for Sex (CE = 4.262). Similarly, Random Forest on Adult
for Sex (CE = 5.980) improved fairness with minimal performance
cost. However, other cases experienced sharp performance declines,
as XGBoost on COMPAS for Sex and Random Forest on Marketing for
Age. Overall, Regularization appears effective in improving fairness but
requires careful analysis.

Mutation Testing. The analysis of Mutation Testing showed signif-
icant trade-offs between fairness and performance, as seen in Table
19, with several CE values close to zero, indicating minimal per-
formance loss while achieving fairness improvements. For example,
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Logistic Regression on COMPAS for Sex (CE = 0.412) and Random
Forest on Finance for Gender (CE = 0.002) showed positive fairness
effects without significantly harming performance. Similarly, XGBoost
on Finance for Age (CE = 0.369) demonstrated a slight improvement
in fairness. However, some cases exhibited performance deterioration,
such as Random Forest on COMPAS for Sex (CE = —2.137) and Decision
Tree on Economics for Race (CE = —0.709). Despite these outliers,
Mutation Testing generally led to more balanced results in all cases.

RQ, — Summary of the Results.

The analysis highlights various techniques to improve fairness
while minimizing performance loss, though their effectiveness
varies across models and datasets. Select Best and MinMax Scaling
emerged as generally reliable methods, often achieving a favor-
able trade-off. Regularization and Mutation Testing also showed
promise, with many cases balancing fairness improvements and
performance. Finally, Simple Imputers and Iterative Imputers demon-
strated fairness benefits in specific scenarios.

5. Discussion and implications

Our findings provide multiple practical implications for practition-
ers (lil) and researchers (Q), which we discuss in this section.

5.1. On the importance of data preparation

A key finding is the varied effectiveness of Sampling practices across
scenarios. While Undersampling and Oversampling improved fairness
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RQ,—Results for the MinMax Scaling practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the

average cost-effectiveness ratio across the 20 experiments.

MinMax Scaling

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Economics (Adult Dataset) Race 0.730
Classification - XGBoost Economics (Adult Dataset) Sex 2.916
Classification - Logistic Regression Economics (Adult Dataset) Race —-0.946
Classification - Logistic Regression Economics (Adult Dataset) Sex -0.719
Classification - Random Forest Marketing (Bank Marketing Dataset) Age 0.0791
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital 1.673
Classification - Random Forest Finance (German Credit Dataset) Gender 0.132
Classification - Logistic Regression Finance (German Credit Dataset) Gender —-0.064
Classification - XGBoost Finance (German Credit Dataset) Gender 0.057
Classification - Decision Tree Finance (German Credit Dataset) Age 25.943
Classification - Decision Tree Finance (German Credit Dataset) Gender 0.428
Classification - Decision Tree Crime (Communities and Crime Dataset) Race -0.712
Classification - Naive Bayes Crime (Communities and Crime Dataset) Race -0.918
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.083
Regression - Linear Regression Crime (Communities and Crime Dataset) Race 0.042
Clustering - k-mean Economics (Adult Dataset) Race 0.616
Clustering - k-mean Economics (Adult Dataset) Sex 0.770
Clustering - K-median Economics (Adult Dataset) Race 0.247
Clustering - K-median Economics (Adult Dataset) Sex 0.192
Clustering - K-center Economics (Adult Dataset) Race 0.764
Clustering - K-center Economics (Adult Dataset) Sex 0.913
Clustering - k-mean Marketing (Bank Marketing Dataset) Age 1.035
Clustering - k-mean Marketing (Bank Marketing Dataset) Marital 0.312
Clustering - K-median Marketing (Bank Marketing Dataset) Age 1.405
Clustering - K-median Marketing (Bank Marketing Dataset) Marital 0.067
Clustering - K-center Marketing (Bank Marketing Dataset) Age 0.574
Clustering - K-center Marketing (Bank Marketing Dataset) Marital 0.452

Table 18

RQ,—Results for the Regularization practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the average

cost-effectiveness ratio across the 20 experiments.

Regularization

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Sex —-18.00
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Race 1.404
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Sex 4.262
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Sex —29.259
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Race 1.423
Classification - Random Forest Economics (Adult Dataset) Sex 5.980
Classification - Logistic Regression Economics (Adult Dataset) Sex 0.214
Classification - Random Forest Marketing (Bank Marketing Dataset) Age 0.260
Classification - Random Forest Marketing (Bank Marketing Dataset) Age —-3.562
Classification - Decision Tree Crime (Communities and Crime Dataset) Race 0.163
Classification - Naive Bayes Crime (Communities and Crime Dataset) Race 31.642
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race 0.248
Regression - Linear Regression Economics (Adult Dataset) Race -0.818
Regression - Decision Tree Economics (Adult Dataset) Race 0.406

in terms of Disparate Impact in datasets like Adult and models like
Logistic Regression, they were less effective in Clustering tasks, where
Scaling worked better. Dataset characteristics also mattered: sampling
improved fairness in COMPAS and Adult but had limited impact on
German Credit, suggesting class imbalance plays a larger role in some
cases. These results align with prior work linking ML bias to dataset
properties [5,6,41]. Undersampling showed more consistent results than
Oversampling, which yielded a broader range of outcomes. While Over-
sampling led to fairness gains in some cases — e.g., Random Forest
on COMPAS and German Credit — it also caused notable performance
drops in others, such as XGBoost. These findings highlight the potential
of Oversampling, but also the need for cautious application to avoid
instability in performance [41].
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W The original data distribution, especially class imbalance,
strongly affects fairness. Practitioners should evaluate imbalances
and apply suitable balancing techniques for each task.

Imputation practices showed a trade-off between fairness and accu-
racy. The Iterative Imputer improved fairness in some cases but often
reduced performance — especially with Random Forest on COMPAS —
due to increased data variability. In contrast, with Decision Trees, it
improved fairness with minimal accuracy loss, highlighting the model’s
role. The Simple Imputer offered a more balanced outcome, improving
fairness while maintaining performance, underscoring the value of
simpler approaches and careful data integrity analysis [81,82].
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RQ,—Results for the Mutation Testing practice. The table reports, for different combinations of tasks, datasets, and sensitive attributes, the

average cost-effectiveness ratio across the 20 experiments.

Mutation Testing

Task Dataset (Context) Sensitive attribute Cost-Effectiveness
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Sex -2.137
Classification - Random Forest Recidivism Prediction (COMPAS Dataset) Race 0.085
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Sex 0.412
Classification - Logistic Regression Recidivism Prediction (COMPAS Dataset) Race -1.699
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Sex —-0.733
Classification - XGBoost Recidivism Prediction (COMPAS Dataset) Race -0.015
Classification - Random Forest Economics (Adult Dataset) Sex 0.001
Classification - Logistic Regression Economics (Adult Dataset) Sex 0.576
Classification - Logistic Regression Economics (Adult Dataset) Race -0.173
Classification - XGBoost Economics (Adult Dataset) Sex 0.003
Classification - Random Forest Marketing (Bank Marketing Dataset) Marital -0.120
Classification - Random Forest Finance (German Credit Dataset) Gender 0.002
Classification - Random Forest Finance (German Credit Dataset) Age 0.092
Classification - Logistic Regression Finance (German Credit Dataset) Age -0.184
Classification - Logistic Regression Finance (German Credit Dataset) Gender 0.0009
Classification - Decision Tree Finance (German Credit Dataset) Age 0.021
Classification - Decision Tree Finance (German Credit Dataset) Gender 0.001
Classification - XGBoost Finance (German Credit Dataset) Age 0.369
Classification - XGBoost Finance (German Credit Dataset) Gender —-0.006
Classification - Decision Tree Crime (Communities and Crime Dataset) Race -0.022
Classification - Naive Bayes Crime (Communities and Crime Dataset) Race —-0.141
Classification - Logistic Regression Crime (Communities and Crime Dataset) Race —-0.004
Regression - Linear Regression Economics (Adult Dataset) Race 0.274
Regression - Decision Tree Economics (Adult Dataset) Race 0.709

@ The impact of imputation on fairness and stability is highly
model-dependent. Researchers should study how imputation in-
teracts with model architectures, as simpler methods can some-
times outperform more complex ones.

5.2. Fairness-aware improvements are algorithm-specific

In our analysis, the role of specific characteristics in the learn-
ing algorithms proved to be important. Indeed, the Feature Selection
practices, such as Select Best, proved particularly effective for linear
models like Logistic Regression, often improving fairness while main-
taining acceptable accuracy levels. In contrast, this same technique led
to the loss of performance in classification models such as XGBoost,
demonstrating that its success is highly dependent on the dataset and
model structure. These findings emphasize the need for alignment
between fairness interventions and different algorithms because well-
matched techniques can lead to improvements in both fairness and
performance [5,41,83].

To deepen this analysis, we conducted a series of model-focused
evaluations. First, we grouped all experimental results by model and
visualized the average effect size (Cliff’s Delta) of each fairness-aware
practice. This analysis revealed that certain practices — such as Select
Best and Undersampling — consistently achieved moderate-to-large fair-
ness improvements in models like Decision Trees and Logistic Regres-
sion. In contrast, practices such as Regularization and Iterative Imputation
exhibited more inconsistent results, sometimes offering gains and at
other times showing negligible or negative impact. These results con-
firm that mitigation strategies interact differently with the inductive
biases and optimization dynamics of each algorithm.

Next, we analyzed the consistency of each practice across datasets.
For every model-practice combination, we measured how often a
statistically significant fairness improvement was observed across all
datasets. We found that practices like Undersampling and Select Best
were not only effective in average effect size but also demonstrated
high cross-dataset consistency—especially when applied to tree-based
models. This reinforces the idea that some model-practice pairings
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generalize better than others and may be preferred in real-world
applications where robustness is critical.

One of the most striking findings was the exceptional impact of
MinMax Scaling in clustering tasks. Across all Clustering algorithms and
in datasets, this method consistently improved fairness, whereas other
practices failed to yield comparable results. This suggests that fairness
concerns are often related to disparities in feature magnitudes, which
MinMax Scaling effectively mitigates. While its effects in Classification
were not as pronounced, they still demonstrated positive contributions,
particularly in Financial datasets. MinMax Scaling’s effectiveness in both
Clustering and Classification further supports the notion that different
learning models require distinct fairness interventions [41,83].

Q Researchers should focus on developing fairness interventions
that dynamically adjust based on model architecture and data.
The observed differences highlight the need for a deeper un-
derstanding of how fairness-aware practices interact with model
learning dynamics.

Regularization practices exhibited highly variable effects, under-
scoring the need for context-aware interventions. While effective in
improving fairness for models like Naive Bayes on Crime, and Random
Forest, Logistic Regression, and XGBoost on COMPAS, its impact was
minimal across other datasets and algorithms, often accompanied by
significant accuracy losses—highlighting model complexity as a key
factor in fairness optimization [6].

Among all tested practices, Mutation Testing emerged as one of
the most consistently effective interventions. By perturbing data, it
addresses discriminatory patterns that influence predictions. It showed
reliable fairness improvements across Random Forest, Logistic Regres-
sion, XGBoost, and Decision Tree models, enhancing metrics such as
AAOD, FDRD, and DI simultaneously. Notably, it was especially im-
pactful for datasets like COMPAS and German Credit, where historical
biases are deeply embedded. Furthermore, Mutation Testing demon-
strated greater stability than most techniques, often improving fairness
without substantial performance loss—making it a promising approach
for fairness-aware learning [84].
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(W Practitioners should carefully select fairness interventions
based on the specific machine learning task and model charac-
teristics. Techniques like Mutation Testing and MinMax Scaling
often improve fairness, but their effectiveness varies. Therefore,
it should be integrated into the model selection and evaluation
process rather than applied as a one-size-fits-all solution.

5.3. Differences in sensitive features

As an additional aspect, fairness practices vary by sensitive at-
tribute. In COMPAS and Adult, gains were greater for Gender than
Race, while in German Credit, improvements were more balanced
across Age and Gender. Certain metric-attribute pairs, e.g., FDRD for
Gender or DI for Race, consistently performed better. Strong fairness
gains for Race in Communities and Crime highlight dataset-specific
biases. These findings align with prior work [16,20] and stress the need
for attribute- and dataset-specific interventions.

Fairness intervention effectiveness depends on the sensitive at-
tribute, requiring careful strategy selection. lll Practitioners should
identify the most bias-prone attributes in their data, while ¥
Researchers should explore how metrics interact with these at-
tributes to design targeted, context-aware solutions.

5.4. Toward a context -specific fairness-aware recommender

Significant differences across datasets show that fairness in machine
learning is not a one-size-fits-all issue but a complex challenge shaped
by technical and social factors. Interventions depend on the model,
dataset, sensitive attributes, and societal influences like data biases
and historical inequalities. Future research should develop adaptive
frameworks that tailor interventions to specific datasets within spe-
cific contexts, balancing performance with social expectations and
addressing the complexity of fairness metrics.

To support this, we propose a preliminary framework to guide the
selection of bias-mitigation strategies. It offers a structured view of
the fairness-aware practices we evaluated, along with their fairness
and performance metrics. Powered by a dataset covering various ML
application domains, tasks, and sensitive attributes (see Section 3), and
built on our experimental results (Section 4), the tool allows users to
specify their domain and receive tailored suggestions.

Recommendations are presented as Best Practices and Worst Prac-
tices, alongside a graphical visualization to support data-driven deci-
sions. By grounding suggestions in empirical evidence, the tool assists
practitioners and lays the groundwork for expanding fairness-aware
recommendation systems. An executable version is available in the
online appendix [31].

The proposed tool bridges research and practice. lll For prac-
titioners, it offers guidance on selecting fairness-aware methods
suited to specific ML application domains. € For researchers, it
facilitates interpretation of results and supports exploration of
interventions across settings. By combining empirical evidence
with user-driven recommendations, this tool provides the basis
for the development of fairness-aware recommender systems.

6. Threats to validity

This section discusses potential threats to the validity of our empir-
ical study and the strategies implemented to mitigate them. Internal
Validity. Internal validity concerns whether our results genuinely re-
flect the factors under study. One of the principal threats in this regard
is the specific implementation choices made when applying fairness-
aware practices. To counter this, we conducted a thorough examination
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of existing definitions of fairness-aware practices [23] and ensured that
our implementation decisions were based on the original design of the
cataloged practices. The selection of fairness metrics and performance
measures can introduce biases in the evaluation process, as different
metrics may lead to varying interpretations of fairness and trade-offs
in performance. To mitigate this risk, we adopted a diverse set of
metrics [16,63-67,85], aligned with previous research [26]. Further-
more, also reliance on a limited number of ML models could impact
the results. To address this, we compared multiple models, including
Random Forest, Logistic Regression, K-means, K-center, and Decision
Tree [19]. Nonetheless, we acknowledge that alternative implemen-
tation choices could produce different results, influencing both the
fairness and performance outcomes. An additional threat concerns the
exclusion of certain practices due to their limited tool support or high
implementation complexity. Although our selection prioritized scala-
bility and reproducibility, we recognize that some excluded practices
might yield different outcomes. Their evaluation remains an important
direction for our future research agenda.

External Validity. External validity pertains to the generalizability
of our findings beyond the study’s specific setup. To enhance gener-
alizability, we selected diverse datasets covering different application
domains [19] and that are frequently utilized in fairness-related in-
vestigations [16,20,63], various ML tasks (classification, clustering,
anomaly detection, and regression) [19], and different protected at-
tributes. Nonetheless, our experimentation may not cover all possi-
ble contexts, and could studies are needed to validate the broader
applicability of our findings. To support replication and further re-
search, all data and scripts are publicly accessible through our online
appendix [31].

Construct Validity. Construct validity reflects how well the study’s
measurements align with the constructs being evaluated. One potential
threat is the selection of datasets to represent different contexts. To
address this, we selected widely used datasets [19] that are pertinent
to our focus on fairness-performance trade-offs [16,20,41,63]. Another
crucial consideration is the choice of fairness metrics and performance
metrics. In particular, our selection is based on different metrics for
each specific ML task, which are well-established within the literature
and serve as robust measures of fairness [16,63-67,85]. Additionally,
the choice of ML models could influence the results. To ensure re-
liability, we employed different models that are common in fairness
research [16,19].

Conclusion Validity. Conclusion validity refers to the reliability of
the inferences we draw. One major threat is the use of statistical tests
to determine the significance of fairness improvements. Specifically,
our study uses the Wilcoxon signed-rank test [73] to assess statistical
significance. This test assumes certain data distribution characteristics,
and any violation of these assumptions could compromise the reliability
of our results. To address this issue, we evaluated the data distribution
using the Shapiro-Wilk test [72] to check for normality, ensuring we
selected the most appropriate test for reliable conclusions.

7. Conclusion and future work

We extend prior work by empirically evaluating fairness-aware
ML practices across high-stakes domains, examining their effectiveness
across tasks, datasets, and sensitive attributes. Results show that impact
varies: some practices significantly improve fairness in certain settings
but not others, highlighting the need for context-specific approaches.
Through cost-effectiveness analysis, we highlight trade-offs between
fairness gains and performance loss, offering actionable recommen-
dations to help practitioners balance both. These findings lay the
foundation for future work, including broader experiments across more
fairness-aware practices and datasets, and the design of tools to support
the application of fairness-aware practices in diverse ML scenarios.
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